
ARCTIC SURVEILLANCE  
AND ICE PREDICTION:

Enhanced with



Notifications/alerts via email to ports, 
terminals, pilotages, and shipping lines to 
support vessel scheduling and facilitate 
JIT arrivals to reduce fuel consumption 
and greenhouse gas

Prediction of ice build-up 
in waterways of interest to 
facilitate advanced planning of 
vessel movement up to 5 days 
in advance

GSTS was engaged by a Canadian port to develop an Ice Build 
Up Prediction and Management Solution. The results of this work 
are significant and evidenced in our findings. In summary, the 
benefits include:

Introduction

According to the ice climatology published by the Canadian Coast Guard (2012), in the St. Lawrence River, 
the first ice formation normally occurs during the second week of December. By the end of December, 
the south half of the estuary, west of a line from Pointe-des-Monts to Marsoui, is ice covered. Normally, 
freeze-up in the remainder of the river begins in early January. Particularly extensive areas of fast ice are 
found in Lake Saint-Pierre, in sections of the river between Lake St. Pierre and Montreal where islands 
hold the fast ice, and in the non-navigable channels between Montreal and Sorel. Dispersal of the ice 
begins in late February and is first evident in the Estuary near the mouth of the Saguenay River where ice 
concentrations fall to very open range. Breakup on the St. Lawrence River usually begins near the middle 
of March in leeward and thinner ice areas. The river is normally clear of all ice by the first week of April. 
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Ice jam is prone to occur in Lake Saint-Pierre downstream 
from Montréal, blocking commercial navigation and 
causing floods that can involve significant damage. The 
water depth of Lake Saint-Pierre is shallow, except in the 
navigation channel, where it is maintained to a minimum 
11.3 m below chart datum. Because of the lower water 
velocity and the presence of curves in the channel, this 
area is more subject to ice congestion than other sections 
in the river (Figure 1). Ice jams usually begin to form 
between Curve no. 1 (Curve Maskinongé) and Curve no. 2 
(Curve Louiseville) (Morse et al., 2003).

Through the work with the Canadian port, GSTS collected ice 
jam event records of the Montréal-Québec City section of 
the St. Lawrence River by reviewing literature and checking 
other sources such as news. Scalabrini and Morse (2021) 
mentioned there are 4 recorded ice jam events since 1993 
in this area, but no details of these events were given. 
According to a news report, the first ice jam event in 2019 was due to freeze-over causing a 13-km long 
ice jam near Île des Barques in the Lake St. Pierre. Canada, unlike the US, does not have an explicit ice-jam 
database; however, Canada has the Canadian Disaster Database (CDD), which includes records of significant 
hydrological-meteorological flood events. Literature and news reports in addition to CDD were explored to 
compile a list of ice jam events in the Montréal-Québec City section of the St. Lawrence River. 

 

Figure 2. Selected points in Lake St. Pierre for ice condition forecast along with nearby weather stations.

Figure 1. Navigation channel in Lake St. Pierre and 
key sections prone for ice jams (Morse et al., 2003).
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Since an ice jam event in Lake Saint-Pierre is an extreme event there are limited records available for 
developing data-intensive forecasting models. Also, there is limited historical ice, meteorological and 
hydrometric data in this region. It is almost impossible to develop an AI model to predict the occurrence 
of such an extreme event with limited data. Therefore, we focused on the prediction of ice concentration 
as a proxy for ice jam event likelihood. We selected 10 points along the navigation channel in Lake Saint-
Pierre. Figure 2 shows the 10 points along with 4 nearby weather stations. 

Data Collection 

Two types of data are needed to build an AI model for predicting ice conditions in Lake St. Pierre: target 
variable and predictor variables. Here, the target variable is ice concentration, and the predictor variables 
are meteorological and hydrometric variables.

Target Variable

The target variable is total ice 
concentration, which was obtained 
from ice charts. GSTS obtained 
electronic ice charts from the Data 
Science and Artificial Intelligence 
Team of National Research 
Council Canada (NRC) that cover 
the vicinity of Lake St. Pierre. 
NRC converted the original ice 
charts (Figure 3 as an example) 
into Shapefiles with the software, 
ICEgg, provided by CIS. The 
electronic daily ice charts range 
from December 2010 to December 
2021 with a large number of 
missing days. In total, there were 
743 daily ice charts of Lake St. 
Pierre and 53 daily ice charts 
downstream of Lake St. Pierre 
from mid-December to early April 
of each year. Figure 3. Example of ice chart of Lake St. Pierre in GIF format on February 5, 2020.
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Predictor Variables

Through communications with the Canadian port, the following predictor variables were identified for 
forecasting ice conditions in Lake St. Pierre:

• freezing-degree days, 
• wind,
• water flow changes upstream Montreal, 
• water level changes downstream Montreal, 
• water temperature, 
• snow buildup, 
• ice thickness, 
• tides, and
• current. 

We conducted data search for the above predictor variables that were in the temporal coverage of the 
ice charts (i.e., December 2010 to December 2021). Table 4 shows the data sources of available historical 
predictor variables. To the best of our knowledge, there is no historical data of water temperature, 
ice thickness, current, or river discharge in the vicinity of Lake St. Pierre. Water level change at Sorel 
consists of changes due to tides, upstream river discharge and meteorological factors (e.g., precipitation 
and wind); therefore, we did not consider tides separately but used water level change at Sorel as one 
predictor variable. To summarize, the final predictor variables for AI model development are: 

• air temperature, 
• wind,
• water level at Cornwall,
• water level at Sorel, and 
• snow.

Table 4. List of available historical meteorological and hydrometric data sources for AI model development

Variables Data Source Notes

Hourly air temperature, wind Environment and Climate Change Canada Historical weather station data

Daily air temperature, wind, snow Canadian Centre for Climate Services
Daily climate data derived  
from observations

Daily snow Environment and Climate Change Canada
Historical adjusted daily rainfall and 
snowfall dataset for Canada

Water level and discharge Water Office Historical hydrometric data across Canada
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Both historical hourly data and climate daily data were downloaded for 4 weather stations. Nicolet has 
the most complete data that match the temporal coverage of the ice data, but there is no snow data. 
Limited snow data is available for Louiseville from the hourly and daily weather datasets. There is no 
precipitation/snow data for Louiseville from the historical adjusted daily rainfall and snowfall dataset, 
while snow data is available for Nicolet until 2018. The snow data for Louiseville from the daily weather 
data was combined with the daily snow data for Nicolet from the historical adjusted rainfall and snowfall 
dataset to get snow data from 2010 to 2021.

Daily water level data is available from 1919 to 2021 at Cornwall Canal (Station #: 02MC022; 45°00’53” N 
and 74°42’41” W) and from 1897 to 2021 at Lanoraie (Station #: 02OB011; 45°57’33” N and 73°12’52” W). 
There is no historical water level data available at Sorel, therefore, Lanoraie is used instead. 

Finally, daily temperature and wind data at Nicolet, daily snow data at Nicolet supplemented with snow 
data at Louiseville for filling in missing values, and daily water levels at Cornwall Canal and Lanoraise 
were fused with the ice data as the training dataset for model development.

Machine Learning Model Development

Our aim of this study is to predict ice concentration (i.e., integer values from 0 to 10) at the 10 selected 
points along the navigation channel in Lake Saint-Pierre with meteorological (i.e., air temperature, wind 
speed, wind direction, and snow) and hydrometric (i.e., water level upstream and near the lake) variables. 
We solve this modelling task with two approaches: a multivariate time series and multi-class classification 
model, and a regression model.  Finally, the Regression Model with XGBoost was chosen due to better 
predictability.

Regression Model with XGBoost

Extreme Gradient Boosting (XGBoost) is a scalable, distributed gradient-boosted decision tree machine 
learning library. It provides parallel tree boosting and is the leading machine learning library for 
regression, classification, and ranking problems. XGBRegressor was selected to develop a regression 
model. The following hyperparameters were tuned: 

• Max Depth: The deeper the trees, the more complex they are. Tuning values 
range from 2 to 20 with an increment step of 4. 

• Min Child Weight: If the tree splitting creates a node with a sum that is lower 
than this value, the model will stop splitting to avoid overly complex models. 
Tuning values range from 0 to 10 with an increment step of 2. 

• Eta: It is the step size of the optimization that is used to prevent overfitting. 
Tuning values are 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5. 

• Gamma: This is the minimum loss reduction that allows further splitting of a 
node. Tuning values range from 0 to 10 with an increment step of 2. 
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The model used 38 features: month, day, temperature, wind speed, wind direction, snow, and water 
levels at Cornwall Canal and Lanoraie. For each of the meteorological and hydrometric feature, 6 
consecutive daily values were used.

K-Folds cross-validator was also used to train the model: The training dataset was split into 6 consecutive 
folds (with shuffling), and each fold was then used once as a validation while the 5 remaining folds 
formed the training set. The predicted ice concentration values were rounded to integers to obtain valid 
ice concentration values from 0 to 10. The model evaluation metrics were also root mean square error 
(RMSE) and mean absolute mean error (MAE).

The hyperparameters and evaluation metrics of the best trained models are shown in Table 5. The main 
conclusions are: 

• The accuracy of the regression model is much better than that of the 
classification model.

• The RMSE ranges from 1.61 to 2.06 and MAE from 1.11 to 1.46.

• Point 8 is the least predictable with the smallest RSME and MAE among all the 10 
points, while points 1 and 5 are the most predictable.

• Analysis of feature importance showed that generally temperature/snow was 
the most/least importance feature.

Table 5. Hyperparameters and evaluation metrics of the best trained regression models 

Model Run Parameters Average RMSE RMSE Standard 
Deviation Average MAE MAE Standard 

Deviation

xgb1-P01 (6, 4, 2, 0.1) 1.61 0.18 1.13 0.10

xgb1-P02 (6, 0, 6, 0.1) 1.68 0.14 1.20 0.12

xgb1-P03 (6, 4, 8, 0.05) 1.70 0.13 1.24 0.11

xgb1-P04 (6, 0, 8, 0.1) 1.78 0.15 1.23 0.09

xgb1-P05 (14, 4, 8, 0.1) 1.65 0.10 1.11 0.07

xgb1-P06 (10, 2, 8, 0.05) 1.71 0.12 1.16 0.08

xgb1-P07 (6, 6, 6, 0.1) 1.81 0.12 1.27 0.12

xgb1-P08 (10, 0, 8, 0.05) 2.06 0.10 1.46 0.07

xgb1-P09 (18, 4, 6, 0.05) 1.81 0.12 1.24 0.10

xgb1-P10 (18, 8, 8, 0.15) 1.66 0.16 1.21 0.11
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As snow was the least important feature for the model performance. A new set of models were trained 
without snow as a training feature. The parameters and evaluation metrics of the best models are shown 
in Table 6. The new models had equal, if not better, evaluation metrics than the best models trained with 
all features. Therefore, the final best models are regression models with 32 features excluding snow.

Table 6. Hyperparameters and evaluation metrics of the best trained regression models with all features except snow

Model Run Parameters Average RMSE RMSE Standard 
Deviation Average MAE MAE Standard 

Deviation

xgb2-P01 (14, 8, 0, 0.2) 1.64 0.14 1.18 0.12

xgb2-P02 (6, 0, 6, 0.1) 1.68 0.13 1.20 0.12

xgb2-P03 (6, 6, 8, 0.1) 1.70 0.11 1.23 0.10

xgb2-P04 (6, 0, 8, 0.1) 1.79 0.15 1.22 0.13

xgb2-P05 (14, 6, 8, 0.1) 1.63 0.12 1.11 0.08

xgb2-P06 (6, 0, 6, 0.15) 1.71 0.12 1.16 0.07

xgb2-P07 (18, 0, 6, 0.1) 1.79 0.10 1.24 0.08

xgb2-P08 (10, 0, 8, 0.05) 2.03 0.12 1.45 0.08

xgb2-P09 (14, 4, 6, 0.1) 1.81 0.13 1.25 0.10

xgb2-P10 (6, 0, 8, 0.05) 1.67 0.16 1.22 0.12

Analytical Model

We also developed an analytical model to issue warnings for potential ice jam event in Lake Saint-Pierre. 
The model is threshold value based. By analyzing the air temperature, wind and snow during the three 
ice jam events, we concluded that three conditions were met prior to the occurrence of the ice jams:

• 2 °C below normal air temperature,
• prevailing northeast wind, and 
• buildup of snowfall.

8



As shown in Figure 7 prior to the occurrence of all three ice jams, air temperature was below historical 
means for at least two days, northeast wind above 10 m/s was observed, and snowfall was present as well.

Figure 7. Air temperature, wind, and snow conditions throughout the three ice jam events in Lake Saint-Pierre in 2019 (Canadian Coast Guard).
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Case Study – 2019 Ice Jam Events

The final XGBoost model was applied to study the ice concentrations from December 15, 2018 to March 
15, 2019. The model was run with daily meteorological hydrometric data. An overall ice concentration was 
calculated by taking weighted averages of the predicted ice concentrations at the 10 points. The weights 
were proportional to the inverse of the MAE errors shown in Table 6. A threshold ice concentration of 8.5 
was chosen to denote potential ice jam risk. In total, there are 6 days with ice concentration above this 
threshold value: January 13, 14, 21 and 31, February 19, and March 7. This model successfully predicted 
the occurrence of two of the three ice jams (i.e., January 21 and 31) as shown in Figure 8.

The analytical model was run to get potential ice jam warnings for the same time period. Two alerts were 
generated on two separate days: January 22 and February 20. The first warning corresponds to the first 
actual ice jam event (Figure 8). 

Figure 8. Case study of the 2018-2019 winter ice conditions: Ice concentration prediction with the final XGBoost model (green dots), ice 
jam warnings issued by the analytical model (red crosses). The red shaded areas correspond to the three ice jam events in 2019.
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Next steps

An ice jam in Lake Saint-Pierre is an extreme event and does not happen frequently. There are limited 
records of past ice jam events in this region; also, there is limited historical ice and environmental data in 
this region. It is therefore almost impossible to develop an AI model to predict the occurrence of ice jam in 
this region. In this work, instead of predicting the occurrence of ice jams we developed machine learning 
models to predict ice concentration at 10 points along the navigation channel in Lake Saint-Pierre. 

The best model was a regression model developed with XGBoost. This model used 32 features, including 
month, day, air temperature, wind speed, wind direction, water levels upstream and near Lake St. Pierre; 
lagged daily values of the meteorological and hydrometric variables were used. We also developed an 
analytical model by analyzing meteorological conditions throughout the ice jam events in 2019. Three 
criteria were observed prior to the occurrence of the ice jams: below normal air temperature, prevailing 
northeast wind, and buildup of snowfall. This model is supplementary to the XGBoost regression model 
and provides early warnings for potential occurrence of ice jams.

Next steps of this project include:

• conduct pipeline engineering and deploy models for operation, and 

• integrate model results into OCIANATM (e.g., development of an UI).
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